\qquad
\qquad

Lesson Problem Solving

10-6 Three-Dimensional Figures

Write the correct answer.

1. Pamela folded an origami figure that has 5 faces, 8 edges, and 5 vertices. What kind of three-dimensional figure could Pamela have created?
2. If you cut a cylinder in half between its two bases, what two threedimensional figures are formed?
3. All four of the faces of a paperweight are triangles. Is this enough information to classify this threedimensional figure? Explain.
\qquad
\qquad
\qquad
Circle the letter of the correct answer.
4. How is a triangular prism different from a triangular pyramid?
A The prism has 2 bases.
B The pyramid has 2 bases.
C All of the prism's faces are triangles.
D The pyramid has 5 faces.
5. A museum needs to ship a sculpture that has a curved surface and one flat circular base. In what shape box should they mail the sculpture?
A cone
C cylinder
B cube
D triangular prism
6. Look at your classroom chalkboard. What kind of three-dimensional figure is the board eraser? What kind of three-dimensional figure is the chalk?
7. You have two hexagons. How many rectangles do you need to create a hexagonal prism?
8. Paulo says that if you know the number of faces a pyramid has, you also know how many vertices it has. Do you agree? Explain.
\qquad
\qquad
\qquad
9. Which of these statements is not true about a cylinder?
F It has 2 circular bases.
G It has a curved surface.
H It is a three-dimensional figure.
J It is a polyhedron.
10. A glass prism reflects white light as a multicolored band of light called a spectrum. The prism has 5 glass faces with 9 edges and 6 vertices. What kind of prism is it?

F	cube	H	triangular pyramid
G	cone	J	triangular prism

F cube $\quad \mathrm{H}$ triangular pyramid
G cone J triangular prism

Puzzles, Twisters \& Teasers

1. 113.04
2. 19.63
3. 30.18
4. 132.67
5. 63.59
6. 94.99

B O T T O M

LESSON 10-6

Practice A

1. 6
2. 12
3. 8
4. rectangle
5. rectangular prism
6. no; a cylinder
7. yes; triangular prism
8. no; sphere
9. a rectangular prism
10. Answers will vary, but should identify and name 5 three-dimensional figures in the classroom. Possible answers include eraser: rectangular prism; chalk: cylinder; globe: sphere; mug: cylinder; desk: rectangular prism.

Practice B

1. 6 faces; 12 edges; 8 vertices
2. 4 faces; 6 edges; 4 vertices
3. 5 faces; 8 edges; 5 vertices
4. no; cone
5. yes; rectangular pyramid
6. no; sphere
7. She needs 6 square pieces of wood because a cube has 6 square faces.
8. It is a triangular pyramid, because a pyramid has only 1 base, and the shape of that base defines what kind of pyramid it is.

Practice C

1. yes; triangular prism; 5 faces; 9 edges; 6 vertices
2. no; sphere; no faces; no edges; no vertices
3. yes; hexagonal pyramid; 7 faces; 12 edges; 7 vertices
4. no; cylinder; 2 faces; no edges; no vertices
5. yes; pentagonal prism; 7 faces; 15 edges; 10 vertices
6. yes; octagonal pyramid; 9 faces; 16 edges; 9 vertices
7. the rectangular prism building Possible answer: because it has one more side to paint.

Review for Mastery

1. $6,12,8$
2. $5,8,5$
3. no, cone
4. yes, rectangular prism

Challenge

Triangular Prism	Rectangular Prism	Pentagonal Prism	Hexagonal Prism
3	4	5	6
5	6	7	8
6	8	10	12
9	12	15	18

faces $=n+2 ;$ vertices $=2 n ;$ edges $=3 n$

Triangular Pyramid	Rectangular Pyramid	Pentagonal Pyramid	Hexagonal Pyramid
3	4	5	6
4	5	6	7
4	5	6	7
6	8	10	12

faces $=n+1 ;$ vertices $=n+1 ;$ edges $=2 n$

Problem Solving

1. a rectangular or square pyramid
2. eraser: rectangular prism; chalk: cylinder
3. 2 cylinders
4. 6 rectangles
5. Yes, It is a triangular pyramid.
6. Yes, A pyramid always has the same number of faces and vertices.
7. A
8. J
9. A
10. J

Reading Strategies

1. faces
2. triangles
3. polygons
4. one; two

Puzzles, Twisters \& Teasers

LESSON 10-7

Practice A

1. $V=27 \mathrm{in}^{3}$
2. $V=24 \mathrm{ft}^{3}$
3. $V=960 \mathrm{yd}^{3}$
4. $V=210 \mathrm{~m}^{3}$
5. $V=125 \mathrm{~cm}^{3}$
6. $V=540 \mathrm{yd}^{3}$
7. $V=60 \mathrm{~cm}^{3}$
8. $V=27 \mathrm{in}^{3}$
9. $V=80 \mathrm{~m}^{3}$
10. the rectangular prism
11. 90 building blocks

Practice B

1. 857.375 in 3
2. $1,800 \mathrm{ft}^{3}$
3. $6,800 \mathrm{yd}^{3}$
4. $231.556 \mathrm{~m}^{3}$
5. $980 \mathrm{yd}^{3}$
6. $3,511.808 \mathrm{~cm}^{3}$
7. $910 \mathrm{~cm}^{3}$
8. $73.5 \mathrm{ft}^{3}$
9. $22,500 \mathrm{in}^{3}$
10. $15 \mathrm{ft}^{3}$
11. 144 cubic inches of wood

Practice C

1. $274 \frac{5}{8} \mathrm{in}^{3}$
2. $0.48 \mathrm{~m}^{3}$
3. $98 \frac{9}{32} \mathrm{ft}^{3}$
4. $1,137.4425 \mathrm{~cm}^{3}$
5. $17 \frac{119}{128} \mathrm{ft}^{3}$
6. $0.02275 \mathrm{~m}^{3}$
7. 2 m
8. 9.5 ft
9. 12 yd
10. 10 in .
11. $1,600 \mathrm{ft}^{3}$
12. $42 \mathrm{ft}^{3}$

Review for Mastery

1. 16 square units
2. 30 square units
3. 16 square units
4. 15 square units

Challenge

5,760 in 3; about 25 ; koi goldfish
2,970 in 3; about 13; clown loach
1,170 in 3; about 5 ; redtail shark
1,600 in^{3}; about 7 ; angelfish

Problem Solving

1. about $586,491,840 \mathrm{ft}^{3}$ of concrete
2. about $1,110.375 \mathrm{ft}^{3}$ of black granite
3. $1.56 \mathrm{~cm}^{3}$ of benitoite
4. $9.375 \mathrm{in}^{3}$ of bronze
5. D
6. H
7. B
8. J

Reading Strategies

1. 4 cubes
2. 3 cubes
3. 12 cubes
4. 4 cubes
5. 3 cubes
6. 12 cubes
7. 24 cubes
8. 24 cubic units
